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ABSTRACT

Empirical orthogonal Function (EOF) analysis is used to
describe the synoptic forcing features of selected northwestern

pacific Ocean tropical cyclones from 1967 to 1976. EOF analy-

sis is applied to the geopotential field at 850, 700 and 500mb

on a 120 point grid with 5 degree latitude and longitude
spacing that is centered on the storm. The 120 EOF coeffi-
cients (for each level) are computed for a sample of 454

cases in the history file. The coefficient vectors are trun-
cated to the first 10 coefficients, based on the Monte Carlo
selection criteria of preisendorfer and Barnett. These coeffi-
cients describe about 83% of the variance in the fields. The
synoptic forcing represented by the EOF ccefficients is then
used as a predictor in a regression analysis track forecast
scheme, along with past storm movement and intensity during
the past 3€ hours. The EQF-~based regression equations are
verified over an independent sample of 50 storms, and the
position errors ¢ompared to the official ﬁoint Typhoon Warning
Center (JTWC) fcrecast errcrs. The EOF-based regression equa-=
tions give, on the average, a 17% reducticn in error when
compared to the official forecast issued by JIWC. Over the
independent sample, the 500mb equations pgrformed better than

the equations of the other two levels.
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I. INTRODUCTION

- Tropical storms sﬁawned over the western North Pacific
Ocean genesis region have great impact on both civilian aad
military populations; accurate movement forecastsvare critical
to reduce their impact upon these communities. The Joint
Typhoon Warning Center (JTWC), Guam, Marianas Islands, issues
the official forecast (to United States military agencies)
of tropical storm movement and intensity for storms generated
in this region. Using current forecast techniques, these |
official forecasts have an average forecast position error on
the order of 120, 240 and 360 nautical miles for 24-, 48-, and
72-hour forecasts (Annhal Typhoon Report, JTWC, 1981). There
is potential for improvement.

Present forecast techniques for tropical storm movement
may be generally categorized as being either statistical (which
includes analog techniques) or dynamical. The motivation
driving the two types of forecasts differs greatly. Statisti-
cal forecasts typically use regression or analog methods with
all available historical storms having archived data to pro-
duce a statistically optimal position forecast. Regression
analysis methods assume that certain variables deterministically
correlate with future storm displacement. These correlated
variables are then used in a regression analysis %o produce a
forecast. Leftwich and Neumann (1977), for example, use a

second order polynomial regression with seven primary predictors
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ﬁo forecast typhoon movement. The seven predictors include
Julian date, initial latitude and longitude, and past 12-
and 24-hour zonal and meridional movement. Since they used
polynomial regression, these seven primary predictors actually
give rise to 35 predictors when :he second order predictors
are formed. Using these predictors, Leftwich and Neumann
were able to account for 65% of the variation in the zonal
displacement and 53% of the variation in the meridional dis-
placement for 12 hours. Over a 72-hour period, the amount of
explained variance became progressively smaller. Analog tech-
nigues (e.g., Jarrell and Sommervell, 1970), use the histori-
cal file of storms to identify storms, and the surrounding
environmental fields, that have strong similarities to the
present storm. Then, a weighted similarity index of certain
variables is used to select those storms in the history file
that are most similar to the present storm. A weighted aver-
age of the selected storm tracks is the basis of the forecast
movement ¢f the present storm. The justification for using
this technique is that a storm with similar location and
surrounding fields should also have a similar track. Jarrell
and Sommervell (1970) present an analog scheme which is the
original version of the scheme used presently at JTWC.

In contrast to the statistical methods, dynamic forecast
techniques assume that the motion of the storm may be fore-
cast directly from numerical integration of geophysical

governing equations (momentum, continuity and thermodynamic
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equations, for example). Harrison (1973) presents a simple
nested grid model to forecast typhoon movehent using the primi-
tive equations. This is the original version of the opera-
tional nested tropical cyclone model available at JTWC
(Harrison, 1981).

Both statistical and dynamical forecast methods have weak-
nesses. The statistical methods have’two primary problems;
first, since they are based on historical data cases, any
storm that has an unusual motion is not likely to be forecast
well, Additionally, the use of statistiéal methcds tends to
homogenize (smooth) the forecast. Forecasts using a blend of
similar past history storms are typically insensitive to
subtle differences in the synoptic (dynamic) forcing fields.
Thus, purely statistical methods have deficiencies in fore-
casting the unusual case and inability to distinguish subtle
differences in the synoptic-scale fields.

Dynamic forecasts, on the other hands, have limitations
in both theory and cost. Due to the smallness of the coriolis
parameter in tropical regions, a geostrophic relationship is
not feasible. This makes initialization of fields difficult
and increases the probability that any erroneous data points
will deteriorate the numerical forecast rapidly. Convective
heating is a driving mechanism for development of tropical
storms, rather than baroclinic instability as in the mid-
latitudes. Unfortunately, convective heating is v.ry difficult
to model (Haltiner and Williams, 1980). Therefore, the govern-

ing equations are suspect in the tropics, due to poor
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initialization and modeling of convective heating. An even
greater problem is that interaction between different scales
of motion is critical to maintain an energy balance in the
tropical cyclone. If the grid spacing is not small eaocugh,
the energy balance will be altered, and possibly give svurious
solutions. For this reason, the grid must have very fine
resolution to simulate numerically this interaction. The cost
of numerical integration on a fine grid can be very large due
to the Courant-Fredrichs-Levy (CFL) condition which requires
smaller integration time steps as the grid spacing decreases
(Haltiner and Williams, 1980). An additional problem with a
fine grid model is that there are generally inadequate wind
and mass observations to initialize the numerical model in the
tropics, and this problem is increased as the grid size is
reduced.

With the difficulties in both types of forecasting methods,
an alternative method is proposed here. This study will em-
ploy Empirical Orthogonal Functions (EOF's) to represnet
numerically the large scale synoptic (dynamic) fields. Then,
these functions will be used to forecast the tropical storm
movement using regression equations. This approach is novel
for forecasting of tropical storm movement, in the sense that
previous regression analysis methods (Leftwich and Neumann,
1977, for example) have not incorporated the entire synoptic
forcing field. 1If an attempt to develop a simple linear re-

gression model using a large synoptic field is made, the number
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of predictors becomes prohibitive, as each grid point value
relative to the storm would be a predictor. Early analog studies
used only a single feature from the synoptic chart, such as
the 700mb trough longitude to the north of the storm, to repre-
sent the synoptic field. This study will use the Empirical
Orthogonal Function representation of the entire synoptic forcing
field around the tropical storm. Therefore, in a broad sense,
this approach may be thought of as a dynamically-based statis-
tical forecast scheme. This type of approach is not totally
without precedence. Lorenz (1377) states:

In an informal conversation in which this writer

(Lorenz) took part in about 20 years ago, the

guestion arose as to how the best system for pro-

ducing the operational objective 24 h precg could

be developed, if the system had to be ready within

one year. We more or less agreed that the further

improvements in numerical weather prediction to be

expected in a single year would be small, and that

the greatest gains would come from an empirical

scheme in which the numerically produced prognostic

charts, or "numerical progs" would enter as

predictors....
Substitution of "improved tropical forecast scheme" for "24 h
prog" in the gquotation gives the basis and purpose of this
study.

Empirical Orthogonal Function analysis allows a field with
many grid points to be represented by a linear combination of
a few constant vectors and variable coefficients, while re-
taining a large portion of the total variation (from the mean

state) in the field. Thus, a synoptic field with many grid

points may be accurately represented by only a few variable
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coefficients (given the vectors are constant), which makes the
technique ideal to tse with regression analysis. For example,
Kutzbach (1967) was able to represent 88% of the total varia-
tion in average January temperatures at 23 stations (grid points)
in North America over a 25-year periocd by using only five
coefficients and constant vectors. That is, the entire sy'.op-
tic scale chart of mean temperature was represented by a 23
element vector, and all of the data were stored in 25 indi-
vidual 23-element vectors. Thus, Kutzback was able to reduce
the number of vectors needed to describe the January tempera-
ture field for each year (at the 23 locations) from 25 to 5.
The Empirical Orthogonal Function analysis in this study
is used for data reduction and representing synoptic fields
numerically. The synoptic-scale forcing upon the tropical
storm may be represented by only a few ccefficients obtained
from the analysis. These coefficients may be then used to
forecast statistically the tropical storm movement. 1In this
manner, the synoptic (dynamic) forcing is incorporated into
the statistical forecasting scheme. Thus, the primary pur-
pose of this study is to investigate the role of the synoptic
forcing and to forecast treopical storm movement from this

foreing.
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II. DATA ACQUISITION AND FIELD DEFINITION

The tropical cyclone tracks and height data used in this
study are identical to those used by Brown (1981). The data
required for an individual case include D~value fields at 850,
700 and 500mb and the storm location history prior to and
after the forecast time. A relocatable 120-point grid is
defined with S5-degree grid spacing in both longitude and lati-
tude. The grid covers an areal extent of 70 degrees east to -
west and 35 degreeé north to south. Individual grid points
are numbered as shown in Fig. 2-1. The grid is moved each
map time such that the tropical storm is always located at
grid point 70. A moveable gfid can create difficulty in ob-~
taining composite variable fields due to the longitude con-
vergence as the storm moves further north. For this study,
this problem is assumed to be of minor importance, and any
composite type fields are computed assuming a flat earth. It
will be shown below that this assumption is not tooc bad éver
the domain used in this study.

D-values are defined (Husc...., 1959) as height deviations
(in meters) from the standard atmosphere height at a constant
pressure surface, and are typically positive in the tropics.
The source of the data is the operational Fleet Numerical
Oceanography Center's (FNOC) Northern Hemisphere (63 X 63)
analyses at 830, 700 and 500mb. The following selecticn condi-

tions are required:
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(1) A tropical cyclone of at least tropical storm (35
knots) intensity must be present west of 180°W;

(2) The storm must persist at least 30 hours with tropical
storm intensity or greater, as ;nalyzed by the Joint Typhoon
Warning Center (JTWC), Guam;

(3) The storm must be iocated between 10° and 25°N. This
requirement was included to insure the grid did not extend
into the Southern Hemisphere, and was not compfised of pri-
marily mid-latitude D=-values. Since the latitudinal domain
is limited, the problem of longitude convergence is nout a
significant problem at the latitudes of the domain. The dis-
tance from the western edge of the grid to the storm ranges
from 1772 nautical miles at 10°N to 1631 nautical miles at
25°N, to 1474 nautical miles at 35°N and finally to 1157
nautical miles at 50°N. This range of distance is considered
insignficicant.

(4) Since the storm position is coupled with the upper
level analysis, only storms existing at 0000 GM?Y and 1200
GMT are considered;

(5) A 36-hour separation between subsequent positions of
the same storm is required to provide a pseudo-independence
between cases. This independence is a critical considera-
tion whenever statistical ahalysis is conducted.

After defining the selection criteria (1) through (S),
the JTWC Annual Typhoon reports from 1967 to 1976 were examined

to select potential cases. These particular years were chosen
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because the FNOC Northern Hemispheric D-value fields were
available from Systems and Applied Sciences, Monterey, Cali-
fornia, during these ysars. Examinaticn of the JTWC reports
yielded 560 potential cases meeting the criteria above. How-
ever, only 540 cases had th¢ required D-value data. Of these
54C, there were data problems with an édditional 36 cases,
leaving 504 valid cases. Archived D-value data were Inter-
polated to the 120-point movable grid by the method of bessel
linear interpolation (Brown, 198l). The phrase “base time"
will be used to define the time of the initial D-value field,
and therefore the forecast. The storm warning position from
JTWC is used as the location at the base time and at ail times
prior to the base time, whereas the JTWC best-track position
is used for verificaticn positions. This is a significant
difference from Brown (1981), who used only the best-track
positions for all historical locations. Warning positions
are used because they are the actual locations available at the
time of fcrecast. The best-track positions are calculated
after the typhoon season, and are not available to the fore-
caster in the field. Nevertheless, they are assumed to be
the optimal position and t.ierefore the value that the forecast
scheme tries to replicate.

Storm warning positions are obtained at the base time and
12, 24 and 36 hours prior to the base time. Best. track posi-
tions are gathered for future positions in 6-hour increments
from the base time to 84 hours in the future. Therefore, a

storm with complete history has continuously availab.e locations
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for 120 consecutive hours. The set of three levels of D-value
fields, four warning positicns and 15 best-track positions
comprise the entire set for each case. The number of cases
having X available prior warning positions and Y future best
track locations available is shown in Table 2-1. It is inter-
esting to note that while there are 504 valid cases meeting
criteria (1) through (S5), only 401 cases have all 3lé-hours of
prior warning position. Furthermore, only 185 cases have foth
36-hours prior warning position and 84 hour future best track
positions available. The number of storms with 36-hour prior
warning position available increases to 298 available cases
with 48-hour future best track location and 401 storms with
30-hour future best track locations at tropical storm strength.
The number of cases with a full 36-hour history is important
when the regression equations are developed.

The composite D-value fields at 500, 700 and 850mb using
all 504 cases are shown in Figs. 2-2, 2-4 and 2-6. Of inter-
est is the relatively small gradient in the tropics in the
500mb composite. This level has relatively little indication
of a tropical disturbance at grid point 70, since the 500mb
level is near the level at which the surface cyclone becomes
an upper-level anticyclone. The lower level (850 and 700mb)
charts show fairly strong gradients in the D-value field around
peint 70. Figs. 2-3, 2-5 and 2~7 show the D-value standard
deviations for all three levels. As expected, the greatest
D-value variation is near the storm location and in the mid-

latitude westerlies to the north. These mean and standard
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TABLE 2 - 1

The number of valid cases by prior JTWC warning positions
and future JTWC best track position.

TOTAL
FUTORE
LOCATIONS
AVAILABLE
(in hours)
6 S04
12 504
18 504
24 504
30 504
36 430
42 380
48 380
Su 380
60 352
66 265
72 265
78 265
8u 265

12

See text for details.

NUBBER OF CASES

ITH BASE TINE AND
24 HOUR

HO 36 HOUR
PRIOR WABNING POSITIONS ONLY
461 422 401
461 422 401
461 422 401
461 422 401
461 422 401
439 400 379
351 315 298
351 315 298
351 315 298
325 291 274
2u2 215 200
242 215 - 200
242 215 200
221 199 185
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“Fig. 2-2.

The mean (composite) D-value field at 500mb.
Isopleths are deviation in meters from

standard atmosphere. Storm is always located

at grid point 70 (X).
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field (in meters) at 500mb. The storm is
always located at grid point 70 (X).
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Similar to Fig. 2-3, except for 850mb.
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deviation fields are the fields used in rormalizing the data
for each case, by grid point, for use in the Empirical
Orthogonal Function analysis. The 504 cases comprise the
data set from which the Empirical Orthogonal Functions will

be obtained.
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III. EMPIRICAL ORTHOGONAL FUNCTIONS

A. BACKGROUND

The terminoclogy "Empirical Orthogonal Function" (EOF) was
introduced by Lorenz (1956). Actually, EOF analysis is a
variation of the statistical technique of principal com-
ponents, and was introduced in its current form’by Hotelling
(1933), and was based on an idea of Pearson (190l1). Before
delving into the mechanics of EOF analysis, the basic concepts
and meaning of principal components will be presented geo~
metrically. Geometric meanings presented for principél
components are valid for EOF's, since EOF's differ from
principal components only by a scaling factor.

Principal components aid in explaining interrelations of
individual variables acting on a larger field. Morrison (1967)
presents a concise geometric interpretation of the method.
Principal components may be drawn from data sets in any num-
ber of dimensions, but their meaning is most easily seen in
three~dimensional space. Suppose three variables (xl,xz,x3)
form a tﬁivariate observation‘space. For example, xl, xz, and
x3 could be the 500mb D-value at gridpoints 1, 2 and 3 respec-
tively. A large collection of simultaneously measured values
of the three variables could be plotted as in Fig. 3-1. The
shaded ellipsoid in the figqure represents the scatter plot of
many observations of the three variables. The origin of the

axis is the mean value for each of the three variabies. The
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Fig. 3-1. An example of trivariate principal
components. See text for details
(Morrison, 1967).
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first of the three principal components (there will generally
be three unique principal components in three dimensions) is
the major axis of the ellipsoid, denoted as Yl in the figure.
In other words, the first prinéipal component is the axis in |
space that‘explains the maximum variation from the origin in
the three-dimensional space. For this reason, the term
principal axes is sometimes used inﬁtead of principal com-
ponents. It is easily seen that this first principal component
can be represented by a vector (and the vector 180 degrees out
of phase) originating at the origin. The second principal
component is the minor axis (YZ) which describes the maximum
amount of variation in the ellipsoid that is not explained by
the first component. The second principal component is also
subject to the constraint that it be orthogonal to the first
component. This is identical to saying the second principal
component is the largest minor axis which is orthogonal to

the major axis. The third principal component is the third
minor axis (Y3) which explains the remainder of the variation
of the ellipsoid. This component is subject to the constraint
that it be orthogonal to the first two components (axes). Thus
the three principal components explain the total variation in
the observation ellipsoid. The components are simply orthogonal
axes, in three dimensions.' It is seen from this simplified
example that the technique may be easily extended to applica-
tion in multiple dimensions. 1f the axes are defined by

vectors, it is straightforward to f£find orthogonal vectors by
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standard methods. This orthogonality constraint simplifies
identification and interpretation.

In M-dimension space, there will be M (or occasionally
fewer) orthogonal components, which are simply the orthogonal
vectors in M space. If there are fewer than M unique com-
ponents, the observation variables are overdefined, and two
or more of the describing variables are perfectly correlated.
If this is the case, one of these perfectly correlated varia-
biles may be omitted with no loss of information.

As mentioned, Lorenz (1956) introduced the terminology
"Empirical Orthogonal Function", and made the application to
the atmospheric sciences. The mathematical method used for
finding the orthogonal components or vectors involves solution
of the eigenvalue problem in M space. EOF's are simply princi-
pal components that have not been scaled by the square root
of the corresponding eigenvalue found in the solution. This
subtle difference is really of little concern. It does cause
a slight modification in the computations, and also slightly
changes the interpretation of the results. This interpretation
difference arises because the loadings (elements) of the solu-
tion eigenvector (principal component) are nothing more than
the correlation of the variables in a given dimension with the
principal axis it defines (Anderson, 1958). No such easy
interpretation of the loadings is possible with EQOF's. This
modification is not significant, and the salient points and
geometric interpretation valid for principal components are

likewise valid in EOF analysis; only the lengths of the
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orthogonal vectors are different. The mathematicai details
will be covered in the next section. :

EOF analysis normally has been used in two primary appli-
cations in geophysical sciences. These are either as a map-
typing tool, or as a tool for reducing dimensionality and
explaining the variance structure of a large field. For
example, Stidd (1967) uses EOF analysis to describe the varia-
tion in average monthly rainfall in Nevada. 1In this paper,
Stidd states:

eigenvectors might be regarded as an ultimate develop-

ment in the use of orthogonal functions to describe

patterns or arrays of data.
He goes on to show that annual precipitaion in Nevada may be
described primarily by one of three basic "components®". The
three are: (1) a winter maximum from large scale storms;
(2) a secondary peak during the summer due to thunderstorms;
and (3) a small effect due to the removal and inclusion of
water into the hydrological structure due to snow pack. EOF
analysis allows extraction of each component and allows the
researcher to determine the primary variables driving each of
the components. Additionally, by using a linear combination
of the eigenvectors (components), it is possible to determine
and estimate the rainfall amount in 3%ata sparse and non-observed
regions. This estimation is done by interpolation of coeffi-
cients associated with each eigenvector. These coefficients
will be «xplained more fully in the next section. Stidd was
able to explain 93% of the total variance in the annual rain-

fall in Nevada by using only three aigenvectors and coefficients.
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This is compared to the initial estimation which required li
charts (one for each month). The key points are that Stidd
was able to both isolate the causes behind annual variation
in Nevada rainfall (over all locations in Nevada), and addi-
tionally, reduce the data required to make thi; estimate by
75% (from 12 charts to three). This "gleaning of the forcing
pattern” and data reduction use of EOF's has Been used fre-
guently in meteorological applications. Other examples of
EOF use in this manner are found in Rinne and karhila (13879),
and Craddock and Flood (1969).

Another application of EOF analysig has been for map typ-
ing. Brown (1981) uses EOF analysis to divide a large sample
of cases into smaller discrete subsets by map typing based on
the coefficients derived from EOF analysis. The primary objec-
tive was to use the subsets of similar cases to form analogue-
type forecasts of tropical cyclone tracks. Accuracy of fore-
casts using this map typing scheme is generally less than with

other objective tropical cyclone motion forecasting techniques.

B. MECHANICS Or' THE EOF METHOD

The mechanics of EOF analysis presented here follows an
elegant treatment by Kutzbach (1967). The notation used in
this development is defined as follows; a single underscored
variable in lower case letters is a vector (e.g., @), an
uppercase variable with two underscoras is a matrix (é), and
a primed vector of matrix is the transpose (e'). The raw

data field (in this study, the 120 grid point fields of
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D-values) is formed into a matrix, é. This matrix is con-
structed so that each column consists of the 120 observed
D-values for a particular data case. Each row represents the
D-values at the same grid point for all data cases. If there
are N separate data cases (storms), with each case having M
grid point values, é is an M X N matrix representing the
observed D-value fields. The objective of EOF analysis is to
determine the single vector (e) in M dimensions that best .
represents all of the N observation vectors. This is equiva-
lent to saying that one wants to find the vector (e) that
minimizes the summed squared error 6£ all observation vectors
compared to (e). Therefore, EOF analysis may be thought of
broadly as a multi-dimensional extension of a least squares
technique.

The matrix A may be constructed in one of three ways:
with the actual data values; with the departure from mean
data values; or with the normalized departure from mean values.
There are advantages and disadvantages to using each type of
initialization for the data matrix A. In the first case, the
resultant EOF's will have magnitudes on the order of the actual
data, and will effectively represent the actual component
field. Morrison (1967) points out that this type of inpute
matrix may be dangerous to use if the vaggables in the differ-
ent dimensions vary widely in magnitude. As seen in the mean
and standard deviation charts of the fields (Figs. 2-2 through
2=7), this-éould be a pr blem here, since the D-values are

generally quite a bit lower in the northern portion of the grid,
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as well as having larger variation in the north. There are
systematic differences in magnitude at different points on

the grid (dimensions). Thus, the grid points with larger

values are given more wei¢ ht than the grid points with smaller

values, and some of the meaning of the resultant eigenvectors
is lost. Por this reason, this type of input data was not
used. A second potential fofm for the data matrix A is to
have the elements be comprised of the deviations from the mean
value of a given dimension (row,. This type of approach is
more in line with the classical principal components approach.
In this case, the eigenvectors are extracted from the covari-
ance matrix. This is really the main advantage to this form,
while the primary disadvantages are that the interpretation

of the resultant eigenvectors becomes muddled due to scaling
of the dimensions and again, there is not equal weight between
dimensions if their magnitades differ. The third choice for
the input data matrix form is to use normalized departures
from the mean. This has a disadvantage in that it may smooth
slightly the resultant eiqgenvectors (Kutzbach, 1967). This
approach was selected because the variations in all dimensions
are equally weighted in extracting the eigenvectors. In this
study, normalization is accomplished by subtracting the mean
value at that grid pofnt (over all cases), and then dividing

by the standard deviation of that grid point over all cases;

(amn)T = lap, - 3,)/8,n
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where:

(a )p is the transformed data point

arn is the original data point (D-value)

Eﬁ is the mean of a at grid point m (taken
over all n cases)

Sam is the standard deviation of a at grid

point m (over all n cases).

Brown (1981) discusses in more detail various methods of
normalization transformations.
After obtaining the normalized input data matrix A (over

all N cases), the next step is to maximize the gquantity
(e'A)'N “/e'e , (1)

(where, unless otherwise noted, any product of two vectors
or matrices is the dot (inner) product) under the constraint

that

(2)

o

io
[}
[

Equation (1) is the squared product of an arbitrary vector
(e) and the actual data vectors. Constraint (2) is made simply
to normlaize the maximized product. This maximization of (1)

with constraint (2) may be rewritten:

Max{y: e'e = 1} where y = (g'&)z Nt (3)
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or

A'eN 7, (4)

-1

Defining R = AA'N ~, equation (4) may be written as

Max{y: e'e = 1} where y = e'Re. (5)

It is of interest to note that the form of g is the cross
product matrix if A is comprised of thie actual data. However,
g is the covariance matrix, or the correlation matrix, if the
input matrix A has elements which are deviations from the
mean or normalized deviations from the mean, respectively.

Premultiplying both sides of equation (5) by e results in

(6)

jo
<
L]
1)
1]

Morrison (1967) shows that maximization of y leads to the
requirement that |R - y;} = (0, or else the solution is trivial.
Maximization of (6), therefore, yields the eigenvalue problem,
where y is the eigenvalue.

Equation (6) applies to maximization of one eigenvector

only. Since there are M dimensions in the original problem,

one wishes to maximize the explained variance in each of the
dimensions. Therefore, it is convenient to rewrite (6) for

all vectors in the M-gpace as
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Here, g is an M X M matrix, rather than a vector as was the
case fcr (€). It turns out that the elements of ¥ are the
eigenvalues found solving lg - }_f__-I‘l = 0. Each coluinn of E
is an eigenvector associated with a single eigenvalue Yi.
It follows from the definition of eigenvectors that they are
orthogonal (uncorrelated). Again, the necessary condition in
finding E is that g'g = i. the identity matrix.

Returning to the basic definition of g; it is seen by

substitution that

E'AA'E = NY. (8)

Morrison (1967) has shown that the eigenvector associated
with the largest eigenvalue (yl) is the vector that explains
the maximum variation in R. 1In fact, the first eigenvector

explains
?
Yy/ Y, (9)
17527 72

of the total variation in g. The variance unexplained by the
first (largest) eigenvector is the residual. The second
eigenvector is associated with the second largest eigenvalue,
and explains the maximum variation remaining in the residual

fielgd, anq is given by
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?.
Yo/ Y, o (10)
242y "1
Therefore, the first two eigenvectors together explain
?
Yy t Y,/ Y; (11)
1 22 1

of the total variation in g. The process continues with each

successive eigenvector describing the maximum remaining varia-

tion in the residual field. The final eigenvector is simply

any variation in the total mean field left unexplained by the

combination of all previous eigenvectors. As the last eigen-

vector explains all of the remaining variation in the field,

the total variation in g is explained by all of the eigenvectors.
Any of the original fields (cases) may be obtained by

calculating the EOF coefficients. These coefficients (called

multipliers by Stidd, 1967, and others) are also orthogonal

and are found by defining:

o
H
1)

'a, : (12)
‘where C is an M X N matrix. The nth row of the coefficient
matrix (C) is the orthogonal coefficient vector corresponding

to the nth case. The input data matrix A may be retrieved by

(13)

>

]
He
o
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which e#actly replicates each data case in é. One of the
primary advantages of EOF analysisbarises from the fact that
the first few eigenvectors often describe a large portion of
the total variance in a sample, depending on the structure
and correlation in the field. One may quite accurately
approximate the actual field by retaining only the largest
few eigenvectors. Assuming 500 cases, the initial data matri#
required to describe the synoptic fields is a 120 X 500 matrix,
which has 60,000 elements. Using only the first 10 eigenvec-
tors and orthogonal coefficients, the original fields may be v
represented accurately by multiplication of two matrices,
the first a 120 X 10 matrix of truncated eigenvectors, and
the second a 10 X 500 coefficient matrix. The total number of
elements in both matrices is only 6,200. Since EOF analysis
allows a high percentage of the total variation to be explained
by only the largest few eigenvectors, it is seen that the data
may be accurately estimated using as little as 10% of the total
number of data points.

This significant reduction of dimensionality makes EOF's
a prime tool to use for climatic estimation, and has been
used as such by Horel (198l), Kidson (1975), Walsh and Mostek
(1980) and Walsh and Richman (1981) among others.

All N observed_fields are represented by the linear

combination

m
= }] .c._ e, n=12,...,N, (14)
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where a is the nth cases. Thus each case may be represented
as a linear combination of the orthogonai coefficients and
elements of the eigenvectors. The first k eigenvectors

(k << m) generally represent a large portion of the total
variance in a. Keeping only the largest k eigenvectors, the

actual cases may be very closely approximated by:

k
= '21 Cin & n=1,2,...,N. (15)
1=

an
If one retains only significant eigenvectors, maximum infor-
mation may be retained with little complicating noise. This
leads to the obvious problem regarding the optimal number of

eigenvectors to keep.

C. SELECTING THE NUMBER OF EIGENVECTORS

In the previous section, it was demonstrated how a data
field may be represented accurately by a linear combination
of only a small number of eigenvectors and coefficients. The
question of how many eigenvectors to retain is wvital. Simply
stated, the question is at what point does the linear combina-
tion no longer add signal, but only describe noise in the data.
Unfortunately, there is no single accepted answer to this
question. Several possibilities are presented here.

The classical principal component approach is outlined by
Morrison (1967), and assumes a very large, normally-distributed
sample for the data. 1In this case, the significant eigenvectors

may be identified by asymptotic behavior of the eigenvalues.
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One seeks those eigenvectors that are significantly different
than zero. Anderson (1963) has shown that sampling problems
using normalized data are much more complex thah when non-
normalized departures from means are used. Therafore, the
initial development given here assumes non-normalized data,
because the mathematical description is easier to follow. When
the number of observations is very large, Anderson (1963)
shows the quantity /H(li-ki) is distributed normally about a
zero mean, with variance of in. Here li is the sample popu 4=
tion eigenvalue, xi is the total population eigenvalue, and
n the number of cases. Further, Anderson shows the eigenvalues
are independent of each other. 1In this case, one may use a
confidence interval approach to determine if the eigenvalues
are significantly different than zero. 1If an eigenvalue is
not significantly different than zero, the associated eigen-
vector describes only random noise. The confidence interval,
given by Morrison (1967) is:

L. L.

2 < A= = (15)
l-ﬁzl/zq/57n l-zl/2Q/§7n

where:

is the standard two tail z score (z = 1.96

2172
gives a 95% confidence interval)

The asymptotic decision rule is simply that the eigenvector is

discarded unless the lower limit in (15) is greater than zero.
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While this method is sound theoretically, and works very
well for large data sets, Preisendorfer and Barnett (1977)
point out that data sets used .in meteorological (and oceano-
graphic) studies are rarely of the size for which asymptotic
behavior begins to emerge. In fact, Preisendorfer and Barnett
suggest that a sa»anple size on the order of 1000 cases may be
required before asymptoticity applies. Since the data set
used in this study is much below this size, the classical
asymptotic selection approach for determining how many eigen-
vectors to retain was not used.

Another approach used throughout the literature (e.g.,
Rinne and Karhila, 1979) involves examination of the natural
logarithm of the eigenvalue. This method is called the LEV
(Logarithmic EigenValue) diagram method. The basis of this
method is that the eigenvectors for those components that
describe signal have a different structure than those that
describe noise. Furthermore, it has been noticed that the
structure change is most easily noted when natural logarithms
of the eigenvalues are examined. To use the method, the eigen-
values are first ordered, from largest to smallest. This
method will work if there is a distinct change in slope of the
ordered eigenvalues at some point. All eigenvalues larger
than this slope change point are retained, and all smaller ones
omitted. While this method apparently does well in some cases,
and is exceedingly simple to use, it is not used in this study

for several reasons. First, it is not at all clear that a
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break in the slope of the eigenvalues at some point is the
démarcation point between those eigenvalues that describe
signal and those that describé noise. Secondly, even assuming
the break in the eigenvalue slope does indeed mark the point
in signal~-to-noise domination shift, the method is scientif-
ically unsatisfying because there is little statistical jus-
tification for its use. ,

Another method that appears in the literature is to sele&t
the number of eigenvalues and vectors a priori, or select a
percent total variance explained value as the cutoff point a
priori. Richman (1980) presents several of these methods in
detail. For example, Cattell (1958) recommends retaining
all eigenvalués necessary to explain 99% of the total variance.
Guttman (1954) recommends retention of éll eigenvectors asso-
ciated with eigenvalues larger than 1. Both of these methods
in effect involve probable overfactoring. That is, use of
these methods leads to keeping more eigenvectors than are
actually required to adequately explain the data. <This in
and of itself is not serious unless the eigenvalues and vectors
are rotated to better fit the clusters in space (see Richman,
1981), but it does tend to defeat the purpose of EOF analysis.
If‘overfactoring occurs, one does not receive maximum data
reduction. Since the purpose of this study was to reduce
the.synoptic sca.? forcing fields to only a few easily separable
components to aid in determining typhoon movement, underfactor-

ing is ..ot a real problem,
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Richman (1980) used a novel approach to determine how many
eigenvectors to retain. He also used rotation of components,
which is discussed in detail in the last section of this chap-
ter. 1llis criteria was defined as "meaningfulness*. That is,
if the component had apparent meaning (if the component field
was interpretable synoptically), the component was retained.
It has been demonstrated (for example, Craddock and Flood,
1969) that higher order eigenvectors and components degenerate
to little more than a series of uncorrelated high and low value
regions. This means that there is some scientific justifica-
tion to Richman's method. Nevertheless, it was not used here
because it is entirely subjective, and therefore could give
inconsistent results when used by different researchers.

Brown (1981) used the method of retaining the number ol
components that explain a "reasonable amount" of the total
variance. Specifically, using the same grid and data fields

that are used in this study, he carried out experiments in

map typing using the largest 10, 15 and 20 of the 120 eigen-
vectors. This selection approach is rather arbitrary, since
there is no objective way of distinguishing what the eigen-
vectors are representing with respect to the signal-noise
problem, and specifically, if any signal is being omitted.
The final method, which is used in this study, is based on
a selection method introduced by Preisendorfer and Barnett
(1977). In essence, the scheme is a Monte Carlo approach to

determining the number of eigenvectors to keep. It is not
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very different from the classic asymptotic apptaoch described
by Morrison (1967). The main difference is that it is assumed
by Preisendorfer and Barnett that not enough cases are avail-
able to use an asymptotic approach with geophysical data bases.
One key assumption is that the true (physical) variables are
normally distributed at all individual grid points. The simu-~
lation input data are normally distributed, with mean zero,
variance one, which is just simulation of point normalized
data. Given these constraints, and using a large number (N > 100
is recommended by Preiseﬁdorfer and Barnett (1977)) of simula~
tions, one can create sufficient numbers of random fields to
simulate accurately the eigenvalues that result if the process
is purely random. 1In addition to calculating the mean value
of the simulated eigenvalue, the standard deviation of that
eigenvalue is calculéted over the 100 or more simulations. If
the true physical eigenvalues deviate from the simulated random
field eigenvalues by more than two (three) standard deviations,
one is 95% (99%) confident that the field is significantly
different from a field that is purelf random. In other words,
if deviation is by more than two standard deviations, one is
reasonably assured that the eigenvector is des:ribing signal’
rather than noise. The simulated eigenvalues obtained in this
study will be presented in the next chapter, along with the
eigenvalues obtained from analysis of the data. In using this
Monte Carlo method, 504 simulated 120 point random grids were
obtained. The eigenvalues of these random fieids were found

and stored. This process was repeated 100 times o obtain the
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simulated eigenvalues and standard deviations of the eigen-
values. These were then compared to the true data eigenvectors.
One caution must be stated concerning use of this method.
Richman (1980) points out that this method has potential to
slightly underfactor. However, this is not of primary con-

cern here since the potential for underfactoring is only slight.

D. ROTATION OF VECTORS

Rotation methods seek to rotate the eigenvectors (axes)
in space to better fit data clusters. There is some contro-
versy existing (Richman, 1980) as to whether rotation of the
resultant components (eigenvectors) should be employed. Many
of the potential schemes have been surveyed in detail by
Richman (1980), who describes some of the specific strengths
and weaknesses of the schemes.

A very simple exanvle of rotation follows. Suppose that
two distinct data clusters are positioned (in Cartesian two-
dimensional space) at [;] and [i]. Following the method out-
lined earlier in this chapter, the eigenvalues would then be
[4"55] (for non-normalized input data). The eigenvectors would
be [i] and [ji] respectively. It is noted then the first
eigenvector (which explains 90% of the total variance) bisects
the two data clusters in space. The second eigenvector does
not really fit the data clusters. Even the first eigenvector
does not give a true representation of the clusters in space.
Misrepresentation of this type may be eased by use of rotation.

The two broad classes of rotation that are employed are the

51




R

orthogonal and the oblique. Orthogonal rotation pivots the
eigenvectors identically so as to maintain the orthogonal
relationship. It is seen in the simplified case just presented
that an orthogonal rotation would never give a perfect repfe-
sentation of the input clusters, as the input clusters only
have a 45° angle between them in the two dimensions, and are
assumed to occur with equal frequency. Oblique rotation, on
the other hand, pivots the vectors so as to most closely fit
the data clusters without necessarily retaining the orthogon-
ality constraint. In the simplified case just presented, the
vectors would be pivoted (withir a scaling factor) to [é] and
[i]. The vectors are no longer orthogonal, nor is it possi-
ble to determine quantitatively‘the amount of total variation
explained by either of the vectors without exhaustive analysis.
Richman (i98l1) uses pre—determinéd input fields to simulate
the principal component processes. He then compares non-
rotated components to both orthogonally and obliquely rotated
components. His results show obliquely rotated components
give vastly improved delineation of the input patterns. He
then concludes that obligquely rotated componer. s are a better
tool to use for map typing than either orthogonally rotated
or nor-rotated components. If the purpose is to _dentify and
interpret all types of meteorological patterns that force
another event, obliquely rotated components would appear to
give superior results. |

Rotatibn was not used in this study for several reasons.

Delineation of patterns of meteorological features was not the
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specific purpose of this research. EOF's were used in this
study for two purposes. First, they were used to obtain the
orthogonal coefficients which are used in the formulation of
regression equations to forecast tropical storm movement.
Secondly, they were used to reduce the data. The first pur-
pose of the research makes physical identification and inter-
pretation of the resultant eigenvalues less critical. It is
the orthogonal coefficients derived from the linear combination
of the eigenvectors that are used, not the actual eigenvectors
themselves. Nevertheless, it is desirable to use the resultant
eigenvectors with certainty to identify and interpret the forcing
features. It is primarily due to the data reduction purpose

of this study that use of rotated components becomes less
attractive. Since the amount of explained variance (by each
component) is unknown after rotation, the question of how many
eigenvectors to retain becomes unclear. In fact, perhaps the
only valid criteria for retention becomes Richman's meaningful-
ness criteria. In any case, the problem of determining how
many vectors to retain becomes much more difficult after rota-
tion has been employed.

An even more insidious problem with rotation of the vectors
is the effect of underfactoring on the resultant vectors.
Richman (1981) also experiments with underfactoring. If too
few vectors are retained and rotated, then the resultant
rotated vectors become combinations of vectors associated with

several actual input data clusters. Therefore, if underfactoring
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exists, the same type of bisection that is seen in the worst
possible case with unrotated vectors may occur with the rotated
vectors. Since data reduction in this study is paramount,
rotation of components seems ill-advised at the present time.
As a final note, Richman's results, and the simplified
results shown at the beginning of this section clearly show
non~rotated components may not represent the true syncptic
patterns., Conceptually, if the data clusters (input data) are
not symmetric, errors in the EOF representation are less likely.
This is perhaps most easily seen with a simplified example.
1f, for instance, in two dimensions, there are two data clus-
ters occurring with equal frequency, one of the resultant
eigenvectors will bisect the two clusters. This is the case
in the simplified example above since the two cluster points
were assumed to occur with equal frequency. If the clusters
do not occur equally, this bisection does not occur. Richman's
simulated fields were input in mirror-image pairs, with equal
probability of occurrence. 1In this case, the resultant eigen-
vector bisected the given input fiélds.v True geophysical
synoptié fields are not orthogonal in nature (Barry and Perry,
1973 and others). On the other hand, it is anticipated that
true geophysical fields do not come in matched opposite pairs
that occur with similar frequency. It is for this reason that
the first several unrotated vectors should indeed represent

actual synoptic variability patterns.
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IVv. RESULTANT EMPIRICAL ORTHOGCONAL FUNCTIONS

The mathematical and theoretical framework for EOF analy-
sis was developed in Chapter III. In this chapter, the forcing
of each eigenvector on tropical storm movement is examined by
correlation of storm motion with the strength of the particular
vector for a given data case, which is given by the value of
the orthogonal coefficient associated with the vector. Before
any meaningful analysis of physical forcing on typhoon motion
may be attempted, the actual eigenvectors must be examined.

Following the mathematical development of Chapter III, the
120 X 504 data matrix was normalized at each grid point, and
the eigenvectors were obtained for all three data levels (500,
700 and 850mb). The resultant eigenvalues for all three levels
were then compared to the random eigenvalues generated from
Monte Carlo simulation using 100 simulations, as suggested by
Preisendorfer and Barnett (1977). These Monte Carlo eigen-
values were all computed from 120 X 504 matrices whose elements
were random normal variables with a mean value of zero and a
standard deviation of one. Thus the statistical structure of
the random fields is identical to the real data normalized
fields. The value of the eigenvalues for the three levels is
given in Table 4-1, which also gives the cumulative percent
explained total variance for each successive eigenvector. Table
4-2 is a list of the randomly generated eigenvalues and their

standard deviations for comparable modes. If the real data
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eigenvalue for a specific mode is greater than the random
eigenvalue plus twice the standard deviation, the eigenvalue
and corresponding eigenvector represent geophysical signal,
and the eigenvector is retained. To facilitate this compari-
son, the value of the random eigehvalue plus twice the standard
deviation is also given in Table 4-2. Thae values of the stan~
dard deviations in Table 4-2 are consistent with Preisendorfer
and Barnett's (1977) results. Comparisons of the three actual
field eigenvalues to those of the random field are conducted
separately, since the number of significant eigenvectors may
be different for each level. The only relationship between
the eigenvectors of the three levels comes from any dynamic
vertical coupling that may exist.

Several interesting features emerge from examination of
the eigenvalues. The number of eigenvectors to retain is dif-
ferent depending on the retention scheme chosen. For example,
Guttman's lower bhound test suggests retention of the first 14
or 15 eigenvalues for these levels. Cattell's 99% retention
rule would indicate retention of more than 40 modes at each
level. The Preisendorfer and Barnett selection scheme is much
less conservative, and suggests retention of only l0 eigenvec-
tors at 850 and 500mb and 11 at 700mb. Because the Preisenddrfer
and Barnett method keeps fewer modes, the potential for under-
factoring increases. Since only 10 or 1l eigenvectors are to
be retained, roughly 15% of the variance in the fields is
directly accountable to random fluctuations (noise). This

amount of unexplained variance is not unrealistic in the
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tropics. These errors are most likely due to either intiali-
zation or measurement error in the fields. This is not sur-
prising because the initialization problem in thé tropics is
difficult (weak governing mass-wind balance relationship).
Even more importantly, there is a very small gradient in the
geopotential field, except in the region near the tropical
storm. This would tend to give a greater weighting to any
observational error in the tropics, compared to the mid-latitudes,
where a linear balance initialization with quasi-geostrophic
constraints can be imposed to reduce errors in the height
fields. Since the areal extent of the grid incorporates a
large portion of the tropical synoptic forcing field (Fig. 2-1)
it is entirely conceivable that there is a 15% level of random
error in the D-value fields.

The 500mb eigenvalues from Table 4-1 are graphically com-
pared to the Monte Carlo simulated eigenvalues (Table 4-2) in
Fig. 4-1. It is seen the actual 500mb eigenvalues decrease
very rapidly with increasing mode, which indicates that a large
number of the components represent data clusters containing
random noise. Graphs of the 700 and 850mb eigenvalues are not
included because they are very similar to the 500mb values.

Preisendorfer and Barnett's assertion that asymptoticity
does not apply for a sample size of 504 data cases may also

be examined. If the asymptotic results are valid, the ratio

|
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should be very nearly constant. Here Ti is the mean randomly
generated ith eigenvalue, si is the standard deviation for the
ith mode, n is the number of cases and m is the number of

grid points. The value of this ratio is given in Table 4-3
for selected modes. It is seen that the ratio is not con-
stant, nor does it approach the theoretical value expected

for asymptoticity. Thus it is concluded that asymptotic

theory is not valid for this study.

TABLE 4-3

Test parameter for the asymptotic theory of eigenvalues
is shown for various modes (see text for details).

MODE 1 2 5 10 15 20 40 60 120
RATIO 49.3 56.8 78.6 78.6 88.2 80.9 85.9 84.2 27.3

Based on these tests for significant eigenvectors, it was
decided to retain the largest 10 eigenvectors for all levels.
These first 10 eigenvectors at S00mb are shown in Figs. 4-2
through 4-11 and will be examined in detail. The first 10
eigenvectors for both the 700 and 850mb level are shown in
Appendix A, without comment. The discussion of the first 10
eigenvectors at 500mb will include an interpretation of the
probable forcing that the particular pattern has on the tropi-
cal storm, which is always at grid point 70.

The actuval values of the eigenvectors in Figs. 4-2 through

4-11 are non-dimensional, since normalized data are used on

input. The broad scale forcing features of an eigenvector do
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have meaning in the standard meteorological sense. Areas of
higher values of the eigenvector may'properly ke thought of

as high pressure (D-value) tegions, areas of low elements as
low pressure regions, and more strongly packed isopleths
indicate stronger flow regions. Finally, it is stressed that
each eigenvector actually represents the pattern shown and the
exact inverse of the pattern shown. Relative gradients of the
patterns and positions of the closed isopleth features remain
unchanged for the positive or inverse eigenvectors. All follow-
ing discussion will be made using the eigenvector pattern
shown; the inverse case will not be discussed. Relevant featﬁres
for the inverse pattern may easily be obtained followinq

the same reasoning as below.

Eigenvector 1 (Fig. 4-2): This p;ttern shows a band of
stronger easterlies directly to tho north of the cyclone.
Additionally, there is a slight ﬁortherly component to the flow
directly upstream of the storm. The forcing of the tropical
cyclone for this type of pattern should be to the west and
south.

Eigenvector 2 (Fig. 4-3): This component shows small gradi-
ents‘throughout the field, as expected in the tropics. As with
pattern 1, a broad band of easterlias is seen to the north of
tho storm, but they are much farther north than for pattern 1.

A primary difference between this component and the first vec-
tor is that there appears to be a low centered south-southwest

of the storm, while this low was to the south-southeast for
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vector 1. This component and component 1 both exhikit proper-
ties of planetary scale waves, as they both have very low
wavenumber over the 70 degree longitudinal span of the chart.
This pattern should induce weak forcing to the west and to

the south.

Eigenvector 3 (Fig. 4-4): An entirely different type of
pattern compared to the.first two components is seen here. The
vector has a fairly strong area of lower values to the west,
with a small higher valued area south-southeast of the storm.
Another small low is seen well to the northeast corner of the
pattern. Forcing on the storm should be to the north (strongly)
and east (weakly).

Eigenvector 4 (Fig. 4-5): The predominant feature of this
vector is a well de;;loped low to the north and east of the
storm. The storm itself appears to be situated in a strong
flow region between a high and low. The forced motion shc.'1d
be strongly to the east, with a weak drift to the scuth.

Eigenvector 5 (Fig. 4-6): A strong high valued area directly
to the north of the storm is the predominant feature in thisg
eigenvector. The pattern is essentially weavenumber 1 across
the 70 degree span of the chart. The physical analogue of
this vector is difficult to determine. It could well be that
this is a bisection of two distinct data clusters of high pres-
sure on the outer extremities of the grid, since this pattern
bears strong resemblence to the non-rotated bisection case

simulated by Richman (1981). 1In any case, the eigenvector is
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usable with coefficients that appear in the formulation of
regression equatiohs,_and does indeed desc:ibe a global waveF
number 5 pattern. This pattefn should force tropical storms
to the west and north. ‘ ‘

Eigenvector 6 (Fig. 4-7): This pattern is another wave-
number 1 across the 70 degree longitude span of‘the grid
(global wavenumber 5). The dual low centers are generally
similar to the pattern in eigenvector 3. The forced motion
of the tropical cyclone should be to the west, with little
meridional forcing.

Eigenvector 7 (Pig.‘4-8)= The expected higher degree of

- complexity for higher order modes is beginning to show in

this vector. Five well-defined high or low centers are seen
in.the pattern. This vector is approximately globa. wavenumber
7, so that with this eigenvéctcr the slow transition from
large scale to smaller synoptic scales is beginning. The
physical meaning of the pattern is also becoming more diffi-
cult to define. The forcing of the storm should be weakly to
the north and west.

Eigenvector 8 (Fig. 4-9): As with eigenvector 7, there is
a complex pattern of well-defined high and low value centers,
with the storm located in the northern regions of a high
center. Forcing to the east and south is anticipated from this
pattern, althou_ . all forced motions should be_weak.

Eigenvector 9 (Fig. 4-10): Eigenvector 9 is somewhat sur-

prising since it has less complexity than the preceeding two
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eigenvectors. Nevertheless, it is approximately global wave-
number 7. A strong blocking high center is found directly to
the west of the storm, while the storm itself is on the west
side of a weaker low. It is possible that the blocking high
pattern represents the effect of the 500mb anticyclone east
of the Tibetan Plateau heat low. Motions forced from this
pattern should be weakly to the south and east.

Eigenvector 10 (Fig. 4-11): The final eigenvector retained
in the truncated set of 10 is the most ccmplex. A series of
well developed highs and lows are seen throughout the extent
of the grid. Short range forcing on the storm would come from
a high located south of the cyclone and two strong low centers
flanking the storm. The pattern is wavenumber 2 over the 70
degrees covered by the grid and corresponds to a global wave-
number 10. This pattern defines even smaller synoptic scale
forcing than the previous patterns. Perhaps coincidentally,
the eigenvector 10 for the 700mb data set (Appendix A) is
virtually identical. This similarity indicates this pattern
is probably a true physical signal, which is vertically coupled
through the mid~troposphere. Motion forced from this pattern
will be to the south with little zonal forcing.

It is essential to show how these ten eigenvectors just
described would combine to represent the original field. Selec-
tion of a case on 0000GMT 27 August 1967 was made at random
to demonstrate the reconstruction. At this time, Typhoon
Marge was located at approximately 18°N 125°E with maximum

winds of 125 knots. The actual S00mb D-value field is shown in
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Fig. 4-12. The areal extent of the grid is from 43¢ to 8°N,
and 85° to 155°E. Therefore, this grid endompasses both
tropical and mid—latitude forcing on the storm. A linear
combination of the first ten eigenvectors and the associated
orthogonal coefficients should be adequate to represent the
relevant physical features according to the discussion in
Chapter III.B.

Among the salient features seen in the total field (Fig.
4-12) is a strong blocking high pressure to the northwest of
the typhoon, positioned at about 25°N, 100°E. A 500mb high
pressure at this location is east of the Tibetan Plateau heat
low which is a stationary featurs of the planetary circulation.
There is also a strong high pressure cell (D-values in excess
of +320 meters) to the northeast of the typhoon. This second
high pressure is the westward extension of the subtropical
anticyclone over the western Pacific. Well to the north of
the cyclone is a strong band of mid-latitude westerlies. A
w#ell-developed trough extends from the westerlies into the
tropics and encircles the typhoon.

As the input data have been normalized, the fields need

to be reconstructed using

m -——
d; = ] (c; e )s; +d

, i=11,2,...,120
i n=1 in’ Ti i’ ree ! ’

where m is the number of eigenvectors and orthogonal coeffi-

cients used in the reconstruction, 31 and s; are the mean
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Fig. 4-2.

Eigenvector 1 elements (multiplied by 100)
at 500mb with the tropical cyclone located
at the x-position.

Fig. 4-3.

similar to Fig. 4-2 except for eigenvector 2.
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Fig- 4-4-

Similar to Fig. 4-2 except for

eigenvector 3.
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Figo 4-50

Similar to Fig. 4-2 éxcept for

eigenvector 4.
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Fig. 4~6. similar to Fig. 4~2 except for
eigenvector 5.
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Fig. 4-7. similar to Fig. 4-2 except for
' eigenvector 6.
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Fig. 4-8, Similar to Fig. 4-2 excéﬁt for
eigenvector 7.

-d

Fig. 4-9. Similar to Fig. 4-2 except for
' eigenvector 8.
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Fig. 4-10.

Similar to Fig. 4-2 except for
eigenvector 9.

Fig. 4-11. Similar to Fig. 4-2 except for

eigenvector 10.
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and standard deviation of the D-value at the ith grid point,
and 4; is the reconstructed value. ~.

The reconstructed field using only the first vector and
coefficient (Fig. 4-13) shows westerlies well to the north
with a ridge circling over the top of the storm from the east.
The general features revealed by use of this eigenvector are
the westerlies and high to the northwest. When the second
and third vectors are included in the reconstruction (Fig.
4~14), little information is gained. This is expected since
these two pattérns are not evident in the actual field.

The inverse of the fourth eigenvector has similarities to
the actual case being reconstructed. Both patterns show a
high pressure to the northeast and northwest of the storm
with a trouéh in the northern section of the grid. 1It is
anticipated that addition of this eigenvector should greatly
improve resolution of features on the reconstructed field.
Changes in the field Sre evident on Fig. 4-15, but the overall
resolution of the features is not dramatically improved.
Nevertheless, inclusion of this vector does increase the high
pressure cell to the northeast bf the typhoon, and increases
the gradient bétween the mid-latitude and tropical regions.

The inverse of the fifth eigenvector also has many similari-
ties to the original field. A significant improvement in the
shape of the general features is seen after the fifth vector
is added (Fig. 4-16). A slight trough appears in the mid-
latitude westerlies and a coupling of the tropical and mid-

latitude trough is seen for the first time. Inclusion of the
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next three eigenvectors (vectors 6 through 8) add very little
to the reconstructed field, and are not shown. Similarities
between eigenvector 9 and the original field include a sharp
trough in the westerlies which connects with a tropical trough
in the vicinity of the typhoon. When this eigenvector is added
to the linear combination of tlLe previous eight, the broad
scale pattern (Fig. 4-17) is delineated much better. There is
general agreement in the positions of the large-sc&le features
and the gradients between them. Further refinement thrbugh use
of higher order modes is necessary to obtain the actual chart.
The difference between the patterns in Fig. 4~12 and 4-18 is,
according to the analysis here, simply random noise. Never-
theless, with only the first nine eigenvectors the salient
features have emerged, and major forcing from the large scale
on' the typhoon is defined. The continued progression in the
reconstructed fields using 10, 20 and 40 eigenvectors are shown
in Figs. 4-18 to 4-20. It is noted that the reconstructed
field is almost exact after 40 terms are included, and some
features due to random noise in the field are reproduced. The
correlation of the reconstructed field using various modes to
the original field is shown in Table 4-4. It is seen here that
the correlation of the two fields asymptotically approaches 1
as the number of modes in the reconstruction is increased.
Furthermore, large jumps in the correlation are seen when the
first and ninth eigenvectors are added, and smaller jumps are

seen with inclusion ¢of the third and fourth vectors. This is
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Fig. 4-12. 500mb D-value (meters) field surrounding
° Typhoon Marge at 0000CMT 27 August 1967.
Narge is located at 18°N 125°E (location X).
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Fig. 4-13. Reconstruction of 500mb D-value field, 0000GMT
27 August 1967, using the first eigenvector and
orthogonal coefficient. This compares to
true field (Fig. 4-12). .
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._Fig. 4-14. sSimilar to Fig. 4-13, except first three
eigenvectors are used in reconstruction.
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Fig. 4-15. Similar to Fig. 4-13, except first four
eigenvectors are used in reconstruction.
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Fig. 4-16, similar to Fig. 4~13, except first five
eigenvectors are used in reconstruction.
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Fig. 4~17. s8Similar to Fig. 4-13, except first nine
eigenvectors are used in reconstruction.
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Fig. 4-18.

Similar to Fig. 4-13, except first ten
eigenvectors are used in reconstruction.

140.0
160.0
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200.0
220.0
240.0

Fig. 4-19.

Similar to Fig. 4-13, except first twenty
eigenvectors are used in reconstruction.
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Fig. 4-20. gimilar te Fig. 4-13, except firs: forty
eigenvectors are used in reconstruction.
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in agreement with the reconstruction shown above with the
exception that the fourth instead of the fifth eigenvector
seems to have a larger impact on the reconstruction.

Because inclusion of the eigenvectors 1, 3, 4, S and 9
seemed to have the greatest impact in the reconstruction, the
orthogonal coefficients associated with these eigenvectors
should have larger magnitudes than the other coefficients for
this case. The values of the first ten coefficients are shown
in Table 4-5. The coefficients associated with eigenvectors
1l and 9 are larger than the other coefficients. Although the
value of coefficient 5 is the third largest value, it is the
same magnitude as the coefficients associated with the second
and third eigenvectors. This is explained in that eigenvec-
tor 2 tends to re-enforce the pattern of the first vector,
while the third eigenvector enforces the joint pattern of one
and two. The coefficient associated with the fourth eigenvec-
tor is small for this case, indicating that this pattern really

had little effect on the reconstruction.

TABLE 4-4

Correlation coefficient of the reconstructed field, using
the number of modes indicated, with the actual field being
reconstructed (see text).

NUMBER OF

MODES USED 1l 2 3 4 5 6 7 8 9 10
CORRELATION .618 .583 .663 .737 .752 .757 .728 .734 .885 .867
NUMBER OF

MODES USED 15 20 25 30 40 50 60 120
CORRELATION .852 .894 .936 .974 .994 .993 .994 1.000
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TABLE 4-5

Values for the first 10 orthogonal coefficients for the
case of 27 August 1967. (See text for details).

Coefficient 1 2 3 4 5 & 1 8 9 10
value 5.94 1.50 ~1.70 -.82 -1.85 -1.03 ~-.75 .26 2.56 ~-.38

These ten orthogonal coefficients define the pattern, and
will be used shortly as predictors in regression equations for
forecasting tropical cyclone motion. The hypothesis is that
the forcing of typhoon motion may be determined from the vari-
ous eigenvector patterns. As a preliminary test of this hypothe-
sis, the zonal and meridional coﬁponents of the typhoon motion
(in nautical miles for various times) are correlated with the
orthogonal coefficients associated with the eigenvectors (ob-
tained from base time field). The correlations are calculated
on l2-hour increments for the 12~ to 84-hour displacement using
the Pearson product moment (Dixon and Brown, 1979). Because
the motion is defined to be positive to the north and to the
west, a positive correlation means increased north or west
forcing, relative to the mean displacement at a given time, with
an increase in the value (not magnitude) of the coefficients.
This holds for lkoth the positive and negative (inverse) coeffi-
cients in that increases in value for a negative coefficient
(decrease in magnitude) decreases the south or east forcing,
or equivalently increases the north or west forcing. Each
coefficient contributes to the tctal forcing, and the total

movement is a summation of the forcing in all directions by all
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eigenvectors. Correlations are obtained for a dependent set
of 454 cases (or fewer for longer time intervals). Assuming
the motion and orthogonal coefficients are hoth distributed
normally, Chatfield (lQBOfNéhows the distribution of corre-
lation coefficients for uncorrelated variables is distributed
N(0,1/N). This means that any correlation of less than about
.09 is not significant (at the 95% level). Tables 4-6 and
4-7 give the correlations for zonal and meridional motion,
respectively.

Most of the correlations agree nicely with the instan-
taneous forcing of the 2igenvectors inferred from Figs. 4-2
tn 4-11, although there are surprises. Perhaps the largest
surprise is the shift in meridional forcing in eigenvector 1
as the time interval increases. For times less than 36 hours,
the forcing is the anticipated south forcing. The forcing
at 48 and 60 hours is not significant, indicating the strength
of this pattern at this time level gives little information on
resultant 48- and 60-hour meridional motion. Between 72 and
84 hours, the forcing of this eigenvector actually becomes
signficiantly northward from the mean 72 to 84 hour meridional
displacement. A possible explanation for this phenomenon is
that this pattern identifies recurving storms. During the
short term, the forcing is to the south, but even more strongly
to the west. The storm then crosses the mean meridional dis-~

placement location after 48 to 60 hours, still well to the west

of the initial longitude. This is not to say the storm actually

moves north of the initial latitude, only that the storm moves
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MODE  ANTICIPATED TIME INTERVAL
PORCING 12 24 36 48 60 72 84

1 YEST +.506 +.530 ¢,553 ¢,477 ¢,495 ¢,358 +, 341
2 4EST -.072 -.061 =.059 -.051 -.061 ~.092 ~,079
3 EAST =.109 =.103 =,139 =, 074 =.049 =.009 +.001
4 2AS7T ~.439 -.412 -,355 =.373 -.371 -.361 ~.340
5 #2ST #.301 ¢,274 +.283 ¢.252 -.221 +.284 +.291
6 d4ES? +.101 +,084 +,039 -.043 -.037 -.090 -.084
7 4EST -.087 ~.079 -.093 -.077 -.038 -.058 -.014
8 2AST -.293 ~,253 -,265 ~.208 =.205 =.240 -.268
9 LITTLE -.129 =<.095 -.045 =, 151 -, 132 -.125 -.118
10 LITTLE -.018 +.019 +.028 +.031 +.093 +.073

+.027
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TABLE 4

-7

Siamilar ¢o Table 4 - 6, except for meridional motion
and positive correlation implies northward forcing.

q0DE ANTICIPATED

TINE INTERVAL

FORCING
12 24 36 48 60 72 84
1 SOUTH -.199 =.211 =, 242 +.017 +.056 +.194 +,.312
’ 2 souTH =.213 =,184 =.175 =175 -.158 =.205 ~-.164
3 NORTH +.362 +.359 +.339 +.262 +.214 +.178 +.061
4 SOUTH -.183 =.176 =.141 =.111 =.080 =.040 -.012
- 5 YORTH +.075 +.034 +.017 +.009 -=.005 +.037 -.047
| 6 LITTLE  =.158 =.163 =.136 =.068 =.112 =.102 =.122
| 7 NORTH $.227 ¢.226 ¢.202 +.254 ¢.223 +.195 +.086
| 8 s0UTH +.084 +.084 +.071 ¢.021 +.040 =.054 -.003
9 LITTLE -.047 =.050 =.007 +.155 ¢.176 +.210 +. 194
10 soutH -.141 =176 =.207 =.262 =.200 ~-.143 =.193
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north of the expected latitudinal position at around 48 hours,
and then remains north of the expected position. The westward
forcing throughout the entire period is not inconsistent with
recurvature, due to the large initial westward displacement.
By the 72 hour time, the storm is north and west of the mean
track displacement at that time, due only to coefficient 1
forcing. The storm displacement from the base time location
is shown in Fig. 4-21 for all cases tI “ have a 500mb coeffi-
cient 1 less than -9, while Fig. 4-22 is a graph of storm
displacement for those storms with a coefficient 1 greater
than +9. Recurvature is not seen immediately here, and more
sophisticated statistical analysis techniques are required to
verify the hypothesis presented above. Nevertheless, these
two graphs show very nicely how the movement correlates with
the coefficient value.

The other correlations shown in Tables 4-6 and 4-7 are
congistent with the inferred instantancous motion obtained
from the eigenvectors. Eigenvectors 3 and 7 (along with 1)
have the largest correlation (forcing) on the meridicnal
motion. Eigenvector 1 has the greatest impact on the zonal
forcing, with vectors 4, 5 and 8 also showing significant
forecing. Surprisingly, eigenvectors 2 and 4 alsoc correlated
significantly with the meridional motion. From the results
shown here, the anticipated forcing is in good agreement
with the actual motion, and justifies use of the coeffi-
cients as predictors in regression equations for the storm

motion.
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Fig. 4-21.

Fig. 4-22.
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V. REGRESSION ANALYSIS

In the preceding chapter, it was demonstrated that the
orthogonal coefficients associated with eigenvectors give
qualitative insight to physical forcing mechanisms acting on
tropical storms. Therefore, it is hypothesized that it is
possible to use these coefficients to forecast quantitatively
tropical storm motion. A regression approach is appropriate
to investigate this hypothesis. Very briefly, regression
analysis involves using a linear combination of known quanti-
ties (predictors) to estimate the vaiue of an unknown quan-
tity (predictand). Dixon and Brown (1979) give a concise
summary of regrassion analysis, while Neter and Wasserman
(1974) provide theoretical background of the technique. 1In
the initial portion of this chapter, the médel is déveloped,
with model results appearing at the end of the chapter.

It was decided that of the 504 total data cases available,
50 would be used as independent cases to test the resultant
equations. Use of 50 cases for the independent data set file
is arbitrary, but still gives a large dependent data set. 1In
the initial set of 504 cases, 185 cases had both complete
past histories (warning positions 36 hours pricor to the base
time) and best track positions that extended to 84 hours be-
yond the base time. Of these 185 cases, it was decided to
hold 35 cases to comprise part of the independent set, leaving

150 cases with full history in the dependent set. The remaining
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15 independent cases were selected from the remaining cases
without complete history. All cases in independent data set
were selected randomly within their respective history sub-
sets. This process left 454 potential cases over which the
regression equations were formed. The fifty independent cases
afe shown in Table 5-1. It will be shown shortly that the
actual number of cases used to derive the regression equa-
tions is less than 454, due to the specifications of the
predictors.

Predictands for this study are the 12- to 84-h zonal and
meridional displacements of the storms in l2-hour increments.
These distances are determined from the base time JTWC warn-
ing position to the JTWC best-track position at the predic-

tand time. Positive motion is defined to the north and to the

west, since the majority-of the displacements are to the north

and west. As there are 14 predictands, 14 regression equa-
tions are required for each of the three pressure levels for
which synoptic data are available. Because the basic data

are only available at 1l2~-hour intervals, and the analyzed maps
are delayed several hours, the forecast time must be carefully
distinguished from the guidance time. A 1l2-h forecast based
on Q000GMT data is the forecast position valid at 1200GMT,
whereas a l2-h guidance based an the 0000GMT data would be
issued several hours after 0000GMT and would be valid 12 hours
after issuance. It is estimated that four hours would be
needed to prépare and issue the forecast. Hence, a forecast

issued based on 0000GMT data could only be used in preparing
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the 0400GMT guidance. A 12-h guidance will then be valid at
1600GMT. To insure that an estimate of the position during
the next 72 hours is always available, forecasts are made to
84-h after the base time. All subsequent references to
times will be for forecast rather than guidance timing.

The potential predictors are identical for all of the 14
regression equations, with the exception of any predictors
that are a function of atmospheric level. 'Predictors are
sought to assess quantitatively the effect of three different
features on storm movement: external (to the storm) physical
forcing, previous movement of the storm, and storm intensity.
Synoptic (and sub-synoptic) external forcing on the storm is
thought to play a large role on storm movement (Brown, 1981
and others). To incorporate the forcing quantitatively, the
orthogonal coefficients associated with the 10 retained eigen-
vectors for a particular data case are selected as potential
predictors. One of the primary objectives in this study is
to determine how well these EOF's represent large scale
features. .

~If the storm is to be forecast properly, prior motion must
also be accounted for (Peterson, 1980). It is necessary to
know toward which direction the storm is moving to determine
what portion of the external forcing will be affecting the
storm. To do this, twelve additional variables representing
past zonal and meridional displacements are added to the set
of potential predictors. All of the prior storm displacements

are based on warning positions to simulate operaticnal
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conditions. The six variables for zonal motion are the prior
12, 24 and 36 hour zonal displacements of the storm, the zonal
displacements from 12 hours to 24 and 36 hours prior, and
finally the zonal displacements from 24 to 36 hours prior to
the base time. The time fr&mes for the meridional displace-
ments are identical.

Storm intensity is the third storm characteristic sought
to assess quantitatively. The most preferable form of this
data would be a meso- or ﬁicroscale analysis of the winds around .
the storm. Since this is not available, the JTWC warning
maximum winds are used to indicate intensity. The intensity
data are available for the base time, and at 12, 24 and 36
hours prior to base time. Therefore, the complete set of
potential predictors includes four predictors for intensity,

12 for past movement and 10 for the physical forcing. Table
5-2 is a listing of the 26 potential predictors, along with
the names used to identiiy each predictor in this study. For
a data case to be used in the formulation of the regression
equations, a complete set of potential predictors and the
proper preaictand had to be available. This decreased the num~
ber of cases available for computation of the regression equa-
tions. Actual valid case numbers are presented with the
results of the regression. Since the number of potential
predictors is initially large, the resultant equations need

to be examined carefully to determine if any of these pre-

dictors may be excluded with little information loss. It is
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TABLE 5 - 2

predictors used_to dsvelofp the —egress‘on
3 first tem Eredzctors are differant for asach
ressure leve

%gOR NANE DESCRIPTION

@ ~N O N FE W N

NN NN N NN @ b e e ah o ab e ed b b
O UV E WV 2 O W O N0 W - 0OWw

CoTY THG Ofthodonal cOoerricient
associated with 3l envector 1.

cof2 The orthogonal coefficieat
associated with e*genvector 2.
cof3 The orthogonal coefficient
associated with eigenvector 3.
sofy The orthogonal coefficient
associated with ai envector 4,
cofs The oF tnagonzl coefficient
assocxate th exgenv ctor 5.
cofé ithogonal coe ent
assoc ated with el envector 6.
co€? The o thogonal cogfficient
assoclated with aigenvector 7.
cofs The orthogonal coefficient
associated with aigenvector 8.
cof9 The orthogonal coafficient

associated with ai envactor 9.
cof10 The orthogonal ccefricient

associated with aigenvector 10.
plat1 Stornm _latitude aovément

for 12 _hours before base time.
pla+2 Stora la<titude movaement

for 24 _hoyrs before base time.
platl Stora latitude sovemant

for 36 _hours bezo:e base tinme.
pla+d Stors latitude aovement froa

24 =0 12 hours before base timae.
plats Stora la*;tuda movement from

36 to 12 aours before base time.
platé Stora latitude aovement froa

36 to 24 hours before base tiae.

plon1 Stora_longitude aovement
‘or 12 hoirs before bass time.
plon2 torn longztude movemenct

for 24 hours before base tinme.
plon3 Sto:s ;ongztnde aovegent
hours pefore base ¢ime.
plond Stora longitude agvement fronm
24 to 12 urs heforae base tine.
plors storna long tude moveaent froa
36 to aours before base tiae.
ploné stors %ongotudo sovenent from

36 *o Ur'sS before bpase tiae.

aavl Stors wvarnping saxiaum wind at
forecast basa *lae.

aavwl Stora warning maxi aun, ¢ind 12
hours priof to base tiag.

anw2 Stora ua:nzng aaxiaums wind 24
hours 0 dase time.

anw) Stora carnxng aaxisum wind 36

hours prior ¢o base tiae.
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desirable to have as few potential predictors as possible.
Therefore, if it is determined that any of the potential
predictors add little to the equations, they should be drcpped
from the developmental set, and the equations should be
rederived over the smaller set of predictors.

The next decision is how to use the predictors to create
the equations. Two primary possibilities exist: all possible
predictors or stepwise regression. All possible predictor
regressions use all predictors at once to form the regression
equations. In this study, all 26 predictors would be used
to formulate the equations. A stepwise regression creates
the regression equations by adding (or deleting) one predictor
per step. At each step, the single predictor that is most
highly correlated with any residual error from the previous
step is added to the predictors used, and the equations (and
residuals) recomputed. This process continues until no addi-
tional predictors meet a pre-assigned significance tolerance
level. Dixon and Brown (1979) give further details of the
procedure. Typically, not all potential predictors are used.

A stepwise screening procedure is used here for two funda~-
mental reasons. First, a stepwise procedure extracts maximum
information out of minimum variables, and variables that add
little information are not used. Second, and mcre impor-
tantly, Neter and Wasserman (1974) show that if two or more ’
potential predictors are highly correlated, retention of both

may have a deleterious effect on interpretation of the equations.
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The problem is called multicollinearity. Statistically, the
effect is to have little additional reduction in the total
explained variance, while decreasing the degrees of freedom
in the equation. Since at least some of the potential predic-
tors are highly correlated, multicollinearity could be a prob-
lem. By using a stepwise régression approach, the problem is
c_r-umvented. Whenever a stepwise regression scheme is used,
a decision on how many predictors are to be used needs to be
made. Two possible approaches are to use a predetermined num-
ber of predictors, so that the aumber of terms in each final
equation are identical, or to use all terms that meet a pre-
determined significance tclerance level. For this study,

all predictors that significantly reduce the variance are
included in the equations, so that the number of terms ia the
various equations differs. A tolerance level (F-ratio) of

4.0 is used for this study (Dixon and Brown, 1979).

Finally, the form of the equations, either linear or
polynomial, must be decided. The simplest type of polynomial
regression involves using all first-order predictors, and
nonlinear combinations cf the fir;t-order predictors in the
model. For instance, if there are 10 initially defined poten-
tial predictors, then the set of predictors used in polynomial
regression include all 10 first order terms, all 10 second
order (squared) predictors, plus the 45 nonlinear products of
all potential predictors. The use of polynomial regressiocn

may occasionally be of aid in fitting the predictors tc the
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predictands when nonlinear cause and effect is anticipated.
Neumann and Leftwich (1977) use a second order §olynomi;1
regression to forecast typhoon movement, although their pre-
dictors do not include‘synoptic forcing explicitly. With 26
potential predictors, as in this study, the number of poly-
nomial predictors becomes unwieldy. A further justification
for not using polynomial regression is that the predictands
give no evidence of interacting nonlinearly with the predictors.
. In summary, 14 linear ragression equations are to be formu-
lated for each atmospheric pressure level, with predictands
being 12- through 84-h zonal and meridional displacements
(in nautical miles) in l2-hour increments. Predictors will
be selected stepwise from a set of 26 potential predictors
over 454 (or fewer) dependent data cases. 50 cases have been
held back to test the equations.

The regression eqﬁations are calculated using the Univer-
sity of Californja BMDP computer routine linear stepwise
regression (Dixon and Brown, 1979). Before presenting the
equations, their ability to explain variation in the predic-
tand is examined by use of Rz statistic. This quantity may
be interpreted as the percent explained variance in the pre-
dictand by the regression equation (using the dependent data
cases). The R2 value for each regression equation is shown
in Table 5-3.

Several properties are immediately seen from the Rz values.

First, the zonal equations appear to explain a greater portion
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TABLE 5 - 3

Sample size and Rz'statistic for each zonal and meridional
ragression equation by forecas+t time and atamosphcc-ic level.

PORECAST INTERVAL (HR)

12 20 36 48 60
YOUMBER OF
3§¥E"EE§%S 351 351 329 256 233

ZONAL EQUATIONS
S00ab L7984 .725 .685 .613  ,568
700mb TJ91 0 L719 .680 .6C0  .553
850ab .784  .712 .651  ,571  ,519
MERIDIONAL BEQUATIONS

500ab .522  .476 404 354 .255
700ab .540  .486 L419  ,347 285

850ab «502 $463 .365 .323 «255

95

72

163

. 556
.550

«335

«315

«252

. 259

84

150 °

L4404
«310

384

.208
.184
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of the total (zonal) movement variation than do the meridional
equations. Over 75% of the total (zonal) variation in the
12-h movement is explained by the equations at each of the
three atmospheric levels. The maximum meridional variation
explained (54%) is for the 12-h movement using 700mb EOF
coefficients. Matching forecast times and levels (excluding

the 84 hour forecast from the 700mb equations), the zonal R2

2 for the

is always at least .24 greater than the meridicnal R
same time period and level. The increased ability of the zonal
equations is expected because there is greater variation in
the zonal movement than the meridional movement. The means

and standard deviations of the zonal and meridional displace~

ments at the various forecast times are shown in Table 5-4.

TABLE 5-4
Means and standard deviations of the predic-

tands (in nautical miles) for the dependent
sample. See text for details.

FORECAST TIME (HOURS)

12 24 36 48 60 72 84
Meridional
displacement
mean 56 119 181 223 282 316 353
standard (50) (100) (150) (165) (221) (230} (267
deviation
Zonal
displacement
mean 51 93 129 195 225 307 372
standard (81) (176) (258) (309} (376) (396) (449)
deviation
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The mean movement for both directions is roughly the same
magnitude, and indicates an average track :oward the north-
west. A more significant difference in the motion is seen in
the standard deviations, which are larger for the zonal motion
than for the meridional motion. As both the zonal and merid-
ional components contribute approximately the same error

2 for the zonal

magnitude in the regression equations, ine R
motion will be significantly greater since there is more
variance to be explained.

2 values in

The second property seen immediately in the R
Table 5-3 is that they decrease rapidly in time for each
pressure level. For the 500mb equations, a general rule of
thumb is that the Rz decreases by a valde of .05 per 12 hour
increment. It is further seen (Table 5-4) that the standard
deviation of displacement increases every 12 hours, heighten-
ing the significance of the decrease of the R2 in time. Simply
stated, the equations predict movement well in the short term,
but the errors grow rapidly with increasing time.

The final property seen in the R2 values is that the
accuracy of the equations is not a strong function of the
atmospheric level in the dependent sample case. The 500mb
R2 values are generally larger than at the other two levels,
although these differences are not significant. A Student’'s
t-test, assuming non-identical variacnes in the population,
was conducted with the null hypothesis that there is no

2

significant difference in the R“ values at the various levels.
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In no case was the test statistic significant at even the
alpha equal .75 level. Therefore, the null hypothesis is |
accepted that over the dependent sample there is no differ-
ence in performance of the equations at the different atmos-
pheric levels.

Tables 5-5 and 5-6 present the regression coefficients
of the 500mb equations by direction of movement. For example,
the 500mb meridional regression coefficients for all seven
forecast times are given in Table 5-5. The first value given
is the intercept. The final regression equation prediction
of displacement is obtained by summing over the product of
all non-zero regression coefficients and the variable asso-
ciated with the cocefficient. None of the 500mb equations
use more than 10 predictors. In seven of the 28 equations,
six or fewer predictors are used. Therefore, these equations
are very simple to use. A past movement variable was always
the first variable selected in the stepwise procedure, so
persistence does play a role in the predicted movement. The
predictions are not simply persistence forecasts, however,
since in general four or five EOF coefficient predictors are
chosen in each equation. Therefore, forcing also plays a
crucial role in the storm movement. Finally, maximum wind
predictors are of little consequence in the final equations,
indicating little impact on the 12-h (or greater) time scale
storm motion (excluding short term trochoidal path oscillation).
The resultant equations for the 700 and 850mb data are shown

in Appendix B. It is also noted that of the potential
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predicturs, very little information wduld be lost by
excluding all past displacement variables except for the
12-h period prior to base time. Additionally, of the
intensity predictors, the most frequently selectad was the
12 hour prior intensity. Therefore, it was decided to re-
derive the equaticns using only 13 potential predictors
(the 10 coefficients at the given level, Platl, Plonl and
Amwl). Results of the equations, in the form of R2 statis-
tics, derived on the smaller set are given in Appendix 3.
The remainder of the results presented in this‘chapter refer
to the equations derived using the complete set of ali 26
potential predictors. '

Results presented thus far have been drawn from the
regression equations using the dependent data set. A true
test of a regression equation comes through testing with
independent data. This testing is critical in determination
of accuracy of the model. The JTWC annual typhoon report
publishes, in addition to best track and warning positions,
the forecast errors for 24, 48 and 72 hour forecasts. The
regression model was tested with the independent data and
is compared to the official JTWC forecast error, which
serves as a benchmark. Of the 50 independent cases, only
45 have JTWC official forecasts at 24 hours, 31 have offi-
cial forecasts at 48 hours and only 17 at 72 hours. Admit~
tedly, the sample size of the independent storms is quite

small, but inferences on aptness of the model may still be
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drawn.
storms, and the homogeneous
regression model errors are

The overall performance

equations on the entire set

Both the complete set of results for the independent

set where both JTWC and the
available will be shown.
(Table 5~7) of the regression

of 50 independent cases is first

examined to determine if there is consistency in the fecre-
casts (indicated by small standard deviations) and to deter-

mine in general how well the equations forecast the motion.

TABLE 5-7

Mean and standard .eviation forecast vector error
(nautical miles) vf 24, 48 and 72 hours for the
set of 50 independent storms.

HOUR FORECAST

24 48 72
Sample size 50 43 36
500mb forecast error
mean 88.4 176.4 277.4
standard deviation 62.5 113.5 167.4
700mb forecast error
mean 110.1 189.3 318.7
standard deviation 91.3 120.5 178.7
850mb forecast error
mean 114.9 205.4 358.0
105.8 146.1 219.2

standard deviation

The 500mb equations outperformed the other two equation sets

by a wide margin, which is surprising. Similar differences

between levels did not appear in the errors of the dependent
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‘sample, given in Table 5-8. A possible explanation is that
thére is a greater variation in the synoptic forcing fields
at 500mb. This allows the 500mb equations to be less suscep-
tible to large forecast errors in cases where the predictors
have extreme values. It turns out that with few exceptions,
the 700mb errxors are similar to the 500mb errors. Where the
700mb equations performed poorly, the results were much
worse than the 500mb equations. Therefore, it appears that
(at least over the independent cases) the 500mb equations
have a smaller likelihood to give a large forecast error.
This hypothesis needs to be tested more thoroughly as addi-

tional data becomes available.

TABLE 5-8

Mean and standard deviation forecast vector error
{nautical miles) of 24, 48 and 72 hours for the
set of 454 dependent storms.

FORECAST INTERVAL

24 48 72
Sample size 351 255 164
500mb forecast error
mean 91.5 203.3 298.7
standard deviation 72.7 113.7 152.4
700mb forecast error
mean 92.6 210.6 293.7
standard deviation 71.9 115.8 121.5
850mb forecast error
mean 95.2 210.7 383.4
standard deviation 71.6 121.5 232.2
103




The next step in examination of the independent data
results is to compare the results of EOF regression forecasts
to the official JTWC forecasts, for those cases that this is
possible. The mean and standard deviation errors for these
valid cases, and the benchmark JIWC official forecast error
statistics are shown in Table 5-9. A superior 500mb scheme
is again evident. More importantly, it is seen the standard
deviation of error for the EOF regression scheme is less
than for the JTWC official forecasts, which indicates the
EOF regression scheme is less likely to have a large forecast
error. The combination of small mean error and small standard
deviation indicates the EOF scheme outperforms the JTWC
official forecast. The 700 and 850mb equation forecasts were
again poorer than the 500mb forecasts, and appear to be about
equal to the JTWC forecasts.

Finally, the EOF regression scheme is compared to the
JTWC official forecast on a case-by-case basis in Figs. 5-1
through 5-9. Any points lying above the straight line on
the graphs represent cases in which the EOF scheme out-
performed the JTWC official forecasts. The 850mb results
(Figs. 5-3, 5-6 and 5-9) show little differences between the
schemes. The 700mb equations (Figs. 5~2, 5-5 and 5-8) show,
in general, a better forecast by the EQF scheme, as a bulk
of the points lie above the no difference line. The overall
comparison statistics appear to have been affected by a few

large forecast errors, especially at 24 hours. This tendency
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Fig. S5-1. Comparison of the forecast error for the inde-~
pendent data cases. Schemes compared are the
500mb EOF regression scheme versus the JTWC
official forecast, for a 24 hour forecast.
Units are in rautical miles.
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Fig. 5-7. Similar to Fig. 5-~1, except the 500mb EOF
regression forecast is compared to JTWC official
forecast for a 72~hour forecast.
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Fig. 5-8. Similar to Fig. 5-1, except the 700mb EOF
regression forecast is compared to JTWC official
forecast for a 72-hour forecast.
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toward large errors does not appear as dramatically in the
500mb forecasts (Figs. 5-1, 5-4 and 5-7). The superiority
of the EOF forecasts to the JTWC official forecasts needs
to be examined over a larger set of independent data.

One final point of interest oh these figures is that
both the 48-hour 850mb and 72-hour 700mb forecasts have an
unusually shaped clustering of EOF regression errors at

about the 150 n mi error level. No physical explanation

for this clustering is known. It is very likely the event
is an artifact of the data. It is, nevertheless, interesting,
and worth closer examination as more data become available.

A final graphical representation of the differences in
forecasting methods is shown in Figs. 5-10 through 5-12.
These graphs are divided by atmospheric level, and on each
are the JTWC error over the independent sample, the EOF
regression forecast over the complete and horogeneous inde-
pendent sample as well as the EOF forecast over the dependent
sample plotted as a function of forecast time. Once again,
the EOF regression scheme forecast appears superior over both

the short and long term for the 500mb equations.
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Fig. 5-10.
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errors. All EOF results computed from
500mb equations.
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Fig. 5=11. Similar to Fig. 5-~10, except EOF regression
results obtained from 700mb equations.
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Fig. 5-12. Similar to Fig. 5-10, except EOF regression
results obtained from 850mb equations.
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VI. POTENTIAL FOR USE WITH INDEPENDENT DATA

Based on the results of the previous section, it appears
that EOF regression forecasting has potential for improving
forecasts of tropical storm movement. Using a limited inde-
pendent data set, the method has been shown to be an improve-
ment on the JTWC official forecasts. There are still
unanswered questions concerning use of the model operationally
on independent storms. The regression equations were derived
using orthogonal coefficients derived from one set of eigen-
vectors. The regression equations derived are strictly valid
only for tropical cyclone cases in which the coefficients
are obtained from these identical vectors, so that the coef-
ficients have a consistent meaning for each storm. If a new
case is added to the dependent set, the set of vectors no
longer exactly explains the maximum variat... . all of the
observations. Therefore, the stability of the eigenvectors
and coefficients must be examined by determining whether the
vectors and coefficients remain nearly the same if additional
cases are added. This stability will be examined theoretical-
ly, and by a simplified experiment.

The set of dependent eigenvectors is defined as those
vectors obtained from the original data set. Independent
vectors are obtained from the combined set of original

dependent cases plus the new independent case. If the
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eigenvectors for the dependent data set are very close to
the eigenvectors for the independent set, then little error
will be introduced by using the dependent eigenvectors to
compute the coefficients for the independent case. In this
case, the independent case coefficients may be used directly
in the regression equations as initially derived. If the
eigenvectors are not consistent, the regression equations
must be re-derived for every new forecast, including the
recomputation of a new set of eigenvectors and coefficients
using all data cases. Because of the large amount of compu-
tation in this case, it is highly desirahle that the coeffi-
cients and vectors are consistent for independent data.

As in Chapter III, the eigenvectors are derived from
solving the eigenvector aquation using the known matrix R,
where R is the correlation matrix of the normalized grid

points:
B = aa n". (1)

R is a square matrix of order equal to the number of dimen-
sions (grid points), M. The set of eigenvectors construcied
over the dependent sample should theoretically be stable if
N (number of individual cases) is large. That is, addition
of a single independent case should have very little effect
on the shape of the observation surface in space. Inclusion

of an additional data case changes R by:
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N 1 .
Reew = F+f Bowp *®sT 22" ¢ (2)

where §NEW is the new (independent) correlation matrix after
addition of the new observation case, R, ., is the original
(dependent) correlation matrix, N (N+1l) the number of cases
prior to (after) inclusion of the new case, and a is the

(M X 1) vector of normalized D-values for the independent
mraa in
(2) is negligible compared to the first term, since the

case. If N is initially very large, the term

normalized observation elements are rarely greater than two

or three. Therefore, to a very close approximation,

Bvew -~ Bowp ¢ (3)
and the eigenvalues and vectors obtained from the dependent
data should be almost identical to those obtained over all
cases.

The above theory was tested with 500mb data using
dependent samples of N = 50, 100, 150, 200, 300, and 400
cases with 33 independent cases. The 33 irdependent case
orthogonal coefficients were computed in two ways:

(1) As a control, the independent cas.. was added to the
dependent sample, R computed, and the true eigenvectors and
orthogonal coefficients recalculated. Therefore, 33 separate
sets of eigenvectors were computed. The eigenvectors and
orthogonal coefficients are the values that minimize the
deviation from the mean state for all of the data.

116




(2) The test method involved computing the eigenvectors
only once from the dependent set (N cases). Theée vectors
were then used to compute the orthogonal coefficients for
the independent cases. If regression equations are not to
be re-derived for every new operational forecast, the coeffi~-
cients in the test method should be nearly identical to
those from the control.

slethod (2) requires considerably less computer time;
however the question is whether the coefficients are suffi-
ciently accurate. Only the first ten coefficients are
examined since they represent the primary contribution to
the 500mb height fields. The comparison for the first four
coefficients are shown in Figs. 6-1 through 6-4. The
quantity

Y. = ABSOLUTE VALUE (Cof. - Cof. )} (3)
i i i,

is summed over the 33 independent cases. Cofil is the ith
coefficient (1 to 10) computed using method (1} and Cofi2
is the ith coefficient computed using method (2). The first
two moments of Yi are examined to determine the stability of
the coefficients. As N increases, the standard deviations
of the differences in the coefficients should become smaller.
The expected "funnel-shape" with increasing N is seen
clearly in the first orthogunal coefficient (Fig. 6-1),

while coefficients 2 and 3 (Figs. 6~-2 and 6-3) tend to have
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Fig. 6~1.
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the expected shape only for N greater than 100. For theb
N = 50 case the mean error for both coefficients 2 and 3
is very large compared to the coefficient size (normally
less than ten). This indicates the first three coefficients
may be derived from the dependent set of eigenvectors deter-
mined from as few as 100 cases. An unexpected result is

found with the fourth coefficient (Fig. 6-4), when N = 400

(also at N 100). The large standard deviation indicates
that at least some of the independent cases have very large
error in this coefficient. A similar indication of unstable
coefficients also occurs in the sixth, seventh and eighth
coefficients.

The scurce of the error in the calculation of the coeffi-
cients was found to be due to the structure of the charac-
teristic equation. Any single vector that is a solution
eigenvector additionally represents infinite other vectors
that are also solutions, and which differ only by a constant
scaling factor (positive or negative). In EOF analysis, the
coefficients depend upon the numerical values (and signs) of
the eigenvectors. 1If one or two of the vectors change signs
during numerical solution of the eigenvectors, then the
coefficients must also reverse, which changes the EOF
reconstruction. It is important to notice that the sign
reversal actually occurs in deriving the new eigenvectors

when the new independent case is added. 1In certain cases,

the sign of the coefficient changes, although the magnitude
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of the coefficient remains almost the same. In the cases

in which some of the eigenvectors reversed signs, the error
bpetween coefficients is large. Even for these cases, the
difference in the absolute values of the coefficients

remains small. This is demonstrated in Fig. 6=5, in which
the coefficient 4 differences are based only on the magnitude
of the coefficients from the control and test methcds. Large
errors in the other coefficients are similarly reduced when
the error differences are between absolute values of the
coefficients. Once the eigenvectors and coefficients are
derived from the dependent set, and the associated regression
equations are generated, this set of eigenvectors must be
used with any independent cases. Even though the dependent
set may be quite large, the addition of a single new case
will introduce the possibility of a sign change in one'of

the eigenvectors, and a reversal in sign of the cocefficients.
This would invalidate the original regression equation set,
and require a re-derivation of both the eigenvectors and

the regression equations with each new entry into the

sample.

The reversal in sign of the coefficients and vectors is
probably due to computer round-off error. Solution of a 120
dimension eigenvalue problem requires simultaneous solution
of 120 homogeneous equations--which is an extremely ill-
conditioned problem (Gerald, 1977). The probability of
catastrophic round-off error increases dramatically as the
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Fig. 6-5.
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number of dimensions increase. However, this reversal
problem is not significant in the study, as long as the
coefficients for independent cases are calculated from
dependent eigenvectors.

Further attempts to isolate the conditions under which
this reversal occurs were without success. Random tests
were conducted in 3, 5, 9 and 20 dimensions. Not until
dimension size reached 20 were the first reversals noticed.
The faét that the reversal does not occur until higher
dimension systems are used is consistent with the argument
above, because the greater the number of dimensions, the
greater the probability for catastrophic round-off error.

Because the coefficients calculated by the two methods
have consistent magnitudes, it may be concluded that the
coefficients computed for independent cases using the same
dependent eigenvectors will introduce very little error to>

the movement forecast. Thus, implementation of these EOF

regression forecasts with independent cases becomes straight-

forward. Only two major operations are required. First,
the EOF orthogonal coefficients from the dependent set of
eigenvectors are stored. This involves multiplication of

a (10 X 120) cranspose matrix of truncated eigenvectors and
the (120 X 1) normalized observation vector, which gives
the ten coefficients. The second step involves simple
substitution of the independent coefficients into the

regression equations. The same eigenvectors and eigenvalues

123




may be used indefinitely on independent storms, although it

is recommended the regression equations be updated at the

conclusion of each typhoon season.
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VII. CONCLUSIONS AND FUTURE APPLICATIONS

It has been shown that EOF coeffi.ients correlate
strongly with the observed motion. Therefore, use of EOF
coefficients to represent the geopotential patterns in the
environment of a tropical cyclone appears to be a valid
approach for incorporation of synoptic information into a
statistically based forecast. Incorporation of synoptic
forcing by using EOF coefficients appears to have potential
in forecasting tropical storm motion. Using an independent
sample, an average of 17% improvement relative to JTWC
official motion forecasts was obtained using the 500mb EOF
regression equations. The use of 500mb equations gave
better forecasts than either the 70Cmb or 850mb equations.
In contrast, Brown (1981) found no significant difference
in forecast ability in a map~-typing forecast technique using
the same three atmospheric levels. Since this is only a
pilot study, the good results shown here need to be tested
further with new data cases. Several conclusions and future
applications are drawn from this study.

(1) The regression equations were developed with a fairly
small dependent data sample, and yet gave good results when
tested with an independent sample. As the numbef of useable
storm cases for the dependent sample increases, the regres-

sion equations should become progressively more refined. Aas
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the dependent data size increases, in any iegression scheme,
more extreme cases are typically forecast better. Large
forecast errors should occur less frequently with a larger
data sample.

(2) This method of incorporating synoptic fields into the
regression equations is not limited to observed fields. It
is likely that coefficients derived from a 24-hour forecast
field (from dynamic numerical weather prediction models)
would improve the long range forecast. As seen in the study,
the accuracy of the regression equations decreased sharply
in time. This study used only the current observed field.
After 24 to 36 hours, it is expected that the forcing from
the mid-latitudes would be significantly different. Use
of a 24 hour prognosis field might give a better representa-
tion of the forcing in the long-range forecast.

(3) The model is extremely simple. Using only values
representing the synoptic forcing in a limited grid region
about the storm, past storm movement and an intensity
measure (which proved to be of little value), the forecasts
appear to be very good. If variables representing other
physical features thought to impact storm movement are
incorporated into the regression equations, even better
forecasts should be possible. It is possible that the phase
of equatorial planetary waves near the storm, and other
large scale circulation features may play a role in tropical

storm movement. These waves are not easily detected.
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Holton (1972) notes that these waves are usually only
identifiable in the stratosphere, although they extend
throughout the troposphere and stratosphere. It is possible
that these waves could be identified using an EOF analysis
of the global band in the tropics at a mid-tropospheric
level. For instance, a global tropical grid, with coverage
to about 30°N and 30°S may be adequate to identify these
waves (which would probably be seen in the first 5 to 10
eigenvectors). These EOF coefficients could then be
incorporated into the regression equation. A global grid
could also possibly detect features such as the Walker
circulation, and these features could be incorporated into
the regression forecast. A better storm intensity than the
maximum wind used in this study needs to be found. Variables
such as the radius of maximum winds should be tested as ;he
data become available. The potential predictors that could
be included are certainly not limited to those mentioned
above.

(4) The model was developed for use in the ﬁestern North
Pacific Ocean genesis basin, although the method could be
developed for other genesis regions. The only difference
in the different regions would be in the values of the
regression coefficients.

(5) Rotation of eigenvectors could also be tried to

improve the model. 1If this were to be done, the number of
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retained vectors would have to be larger, to prevent against

underfactoring.

(5) Application of the EOF scheme in its present form
would be a simple matter. 1In fact, if the regression
equations were updated only once a year, the entire forecast
could conceivably be obtained on a hand-held programmable
calculator with sufficient memory to store the mean and
standard deviation of the grid points and all eigenvectors.
Entry of the data at the 120 grid points is all that would
be required to generate the movement forecast. The grid
| point data might be obtained using a Bessel linear inter-
polation from the 63 X 63 FNOC analysis. Therefore, the
scheme could be implemented for operational use with a
minimum effort. |

In conclusion, the EOF reqression §;heme shows great
promise for improvement of operational forecasts of tropical
storm movement. In this pilot study, using a very simple
model, the scheme performed very well. Potential improvement
is possible through addition of more sophisticated physical
forcing parameters and forecast dynamic fields that may

affect storm movement.  Further research in this area is

definitely warranted.
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APPENDIX A

700 AND 850MB EIGENVECTORS

The first 10 eigenvectors for the 700 and 850mb level

follow. These are the vectors used in deriving the coeffi-

cients used in the regression equations.
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Fig. Al-3. Similar to Fig. Al-l except for eigenvector 3.

Fig. Al-4. Similar to Fig. al-l except for eigenvector 4.
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Fng Al-5. Similar to Fig. Al-l except for eigenvector 5.
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Fig. Al-6. Similar to Fig. Al-l except for eigenvector 6.
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Fig. Al-8.

Similar to Fig. Al-l except for eigenvector 8.
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Fig. Al-9. Similar to Fig. Al-1 except for eigenvector 9.

Fig. Al-10. Similar to Fig. Al-l except for eigenvector 19.
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Fig. Al-ll. Similar to'Fig. Al-l except for 850mb level.

Fig. Al-12. similar to Fig. Al-ll except for eigenvector 2.
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Fig. Al-13. similar to Fig. Al-ll except for eigenvector 3.
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Fig. Al-14. Similar to Pig.fAl~ll except for eigenvector 4.
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Fig. Al-15. Similar to Fig. Al-ll except for eigenvector 5.

* Fig. Al-16. Similar to Fig. Al-1ll except for eigenvector 6.
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Fig. al-17. Similar to Fig. Al-ll except for eigenvector 7.
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, Fig. Al-18. Similar to Fig. Al-1ll except for eigenvector 8.
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Fig. Al-19. Similar to Fig. Al-1ll except for eigenvector 9.

. Fig. Al-20. sSimilar to Fig. Al-1l1 except for eigenvector 1l0.
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APPENDIX C
d0DIFIZD REGRESSION EQUATION RESULTIS

The enclosed tabls gives the 2 statistic, and the sampls size
for each atmospheric level, for the modified regression equatiors.
hese eguations vwere derived usjing onlg 13 potantial gredxctors,
+he 10 coeffiecients, Pla+1, Plonrt and Aawt, The_values aay be
coapared with Table 5-3 us:ng the entire set of 26 predictors.

s
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TABLE C - 1

Saaple siza and R® stasistic for each zonal and meridional

godi{ied Tagressicn agua+tion by forecast time and atmospheric
avel.

FORECAST INTERVAL (HR)

12 24 36 u8 60 72 84
NUMBER OF
gggingﬁggs 409 409 387 307 281 203 184

ZONAL EQUATIONS
500ab T77 0 L7 «672  .594  .549  .519  .457
700ab .758  .695 .69 574  .S544 541  .470
350mb .738 .676 .614  ,536 497 .S503  .456
MERIDIONAL EQUATIONS

500mb .483 44 .395  ,325  .229 .22  .169
700mb © L4555  L.435 .378  ,315  .228 .202 .145
850ab 431,396 .337 .285 .225 .219 .11
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